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Since an early flush of optimism in the 1950, smaller subsets of artificial intelligence - first machine learning, then
deep leaming, a subset of machine learning - have created ever larger disruptions.
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Artificial
Intetligence

Machine
Learning

Deep learning is a branch of
ML that uses neural network
models to understand large
amounts of data. It can
accelerate processes like
image and speech recognition,
and natural language
recognition.
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ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data




Machine Learning
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Why is it hard?
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Raw Image Representation

pixel 1

Learning
Algorithm

pixel 2




Things we want to do with data

> Label image

Audio

> Speech recognition

Text > Web search




Features for machine learning

)

Images
Image Vision features Detection
Audio
Audio features Speaker ID
Text ) Web search

Text features




The short answers

1. ‘Deep Learning’ means using a neural network
with several layers of nodes between input and output

2. the series of layers between input & output do

feature identification and processingin a series of stages,
just as our brains seem to.




How do We Train Deep Architectures?

* |nspiration from mammal brain
* Multiple Layers of “neurons” (Rumelhart et al 1986)

* Train each layer to compose the representations of the previous layer
to learn a higher level abstraction

* Ex: Pixels = Edges = Contours = Object parts = Object categories
* Local Features = Global Features

* Train the layers one-by-one (Hinton et al 2006)
* Greedy strategy



Deep Learning: learn representations!
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Training set

Unsupervised
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Machine learning workflow

Feature extraction Machine learning
algorithm

Grouping of objects

!ased on some com.l
' charaiiistics

Predictive model




Deep Learning trends

Now

0-2 years 3-5 years
Tagged data Tagged & untagged data




Learning from tagged data (supervised)

Coffee mug Coffee mug Coffee mug

Coffee mug Coffee mug

Testing: What is this? m

Coffee mug




earning from tagged data

Deep learning

Performance

Amount of data



TRADITIONAL MACHINE LEARNING
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Deep learning applications

More traditional Machine Learning Applications to Deep Leaming Application
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A Motivational Task: Percepts = Concepts

very high level representation:
MAN]| |SITTING

* Create algorithms 4
* that can understand scenes and describe o
them in natural language ‘
g ; lightly higher level s i

* that can infer semantic concepts to allow R SRR
machines to interact with humans using these ‘

raw input vector representation:

concepts i i
'=[23]19]20 18

* Requires creating a series of abstractions T R Y

* Image (Pixel Intensities) = Objects in Image = Object
Interactions = Scene Description

* Deep learning aims to automatically learn these
abstractions with little supervision




Neurons in the brain




Neural Network (Deep Learning)
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Single Unit, Input, weights, activation function, output

Bias xo

Jf(x) = g(wy Xgt W) X3+ Ws X5 )

W1
Input x1 .' -

. >.. output

Activation functions:
1. linear

2. Sigmoid

3. Tanh

4. Relu

5. Softmax

etc.

Input x:2



A dataset

Fields class
1.4 2.7 1.9 0
38:3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc ...

Train the deep neural network




Multilayer Perceptron with Back-propagation
First deep learning model (Rumelhart, Hinton, Williams 1986)

Compare outputs with
Back-propagate | correct answer to get

error signal to error signal
get derivatives
for learning

hidden
. layers
< —

input vector

Source: Hinton's 2009 tutorial on Deep Beliet Networks






Deep Visual-Semantic Alignments for Generating
Image Descriptions (karpathy, Fei-Fei; CVPR 2015)

“tWO' young girls are ) "boy is doing béj'Ckﬂip "construction worker in "man in black shirt is
playing with lego toy. on wakeboard. orange safety vest is playing guitar."

working on road."




Example: Learning the Configuration Space of a Robotic Arm




| Computer Vision 3D Werld

Deep Learning in DT
Computer Vision i i

( camera camena










Deep Learning in
NLP and Speech
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Imitating famous painters




Handwriting
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airplane

automobile E.'.E.h.ﬂ‘

bird
cat
deer
dog
frog
horse
ship
truck

CIFAR 10 and Convolutional Neural Network
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CIFAR 10 dataset:
50,000 training images
10,000 testing images
10 categories (classes)

Accuracies from different methods:
Human: ~94%

Whitening K-mean: 80%

Deep CNN: 95.5%



Recommender System
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Recommender System
e
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person : 0.989
. refrigerator : 0.979

*the original image is from the COCO dataset
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
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Google Brain




Building huge neural networks

10 million connections

¥

1 billion connections

\ 4

10 billion connections




Desiderata for Learning Al

* Ability to learn complex, highly-varying functions

* Ability to learn multiple levels of abstraction with little human input

* Ability to learn from a very large set of examples
* Training time linear in the number of examples

* Ability to learn from mostly unlabeled data
* Unsupervised and semi-supervised

* Multi-task learning
* Sharing of representations across tasks

* Fast predictions



Thanks for Listening

Any Questions?



